An Optimized Low-Dissipation Monotonicity-Preserving Scheme for Numerical Simulations of High-Speed Turbulent Flows
نویسندگان
چکیده
This paper presents an optimized low-dissipation monotonicity-preserving (MPLD) scheme for numerical simulations of high-speed turbulent flows with shock waves. By using the bandwidth dissipation optimization method (BDOM), the linear dissipation of the original MP scheme of Suresh and Huynh (J. Comput. Phys. 136, 83–99, 1997) is significantly reduced in the newly developed MP-LD scheme. Meanwhile, to reduce the nonlinear dissipation and errors, the shock sensor of Ducros et al. (J. Comput. Phys. 152, 517–549, 1999) is adopted to avoid the activation of the MP limiter in regions away from shock waves. Simulations of turbulent flows with and without shock waves indicate that, in comparison with the original MP scheme, the MP-LD scheme has the same capability in capturing shock waves but a better performance in resolving small-scale turbulence fluctuations without introducing excessive numerical dissipation, which implies the MP-LD scheme is a valuable tool for the direct numerical simulation and large eddy simulation of high-speed turbulent flows with shock waves.
منابع مشابه
Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملOptimized Sixth-order Monotonicity-Preserving Scheme
In this paper, sixth-order monotonicity-preserving optimized scheme (OMP6) for the numerical solution of conservation laws is developed based on the dispersion and dissipation optimization and monotonicity-preserving technique. The nonlinear spectral analysis is used for the purpose of minimizing the dispersion errors and controlling the dissipation errors. The new scheme (OMP6) is simple in ex...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملFlux Corrected Finite Volume Scheme for Preserving Scalar Boundedness in Reacting Large-Eddy Simulations
Preserving scalar boundedness is an important prerequisite to performing large-eddy simulations of turbulent reacting flows. A number of popular combustion models use a conserved-scalar, mixture-fraction to parameterize reactions that, by definition, is bound between zero and one. To avoid unphysical clipping, the numerical scheme solving the conserved-scalar transport equation must preserve th...
متن کاملFlux Limited Dissipation Schemes for High Speed Unsteady Flows
Within the framework of the Local Extremum Diminishing (LED) or Essentially Local Extremum Diminishing (ELED) principle, efficient approaches to obtain a class of non-oscillatory high resolution schemes are presented. The LED principle requires that local maxima should not increase and local minima should not decrease to produce a monotonicity preserving scheme for scalar hyperbolic conservatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 56 شماره
صفحات -
تاریخ انتشار 2013